
Distributed Computing Overview

Introduction
The rise of networked workstations and fall of the centralized mainframe has been the most
dramatic change in the last two decades of information technology. This shift has put more
processing power in the hands of the end-user and distributed hardware resources throughout the
enterprise. No longer the domain of raised floors and data centers, processing power now
resides on desktops, workgroup servers, and minis. This shift first involved hardware; the
current challenge is to develop the software infrastructure to make use of these now distributed
resources.

As networks of computing resources have become prevalent, the concept of distributing related
processing among multiple resources has become increasingly viable and desirable. Over the
years, several methods have evolved to enable this distribution, ranging from simplistic data
sharing to advanced systems supporting a multitude of services. This paper presents an
overview of the means used to enable distribution of computing work, covering core concepts
and popular implementations of those concepts. The objective is to educate the audience as to
the technologies available and their strengths and weaknesses.

This white paper was developed by senior technical staff at QUOIN, a software development and
consulting firm that specializes in distributed objects and business components.

The Common Foundation
Network Communication
Underlying all distributed computing architectures is the notion of communication between
computers. Although basic, this shows how close, conceptually, some common distribution
architectures are to their underlying communication facilities. The combination of hardware and
system-level software that enables computers to communicate is frequently referred to as the
transport layer. When several computers are connected to one another through a common
transport layer, they can be considered a network of computers.

Much as a piece of information can be wrapped, addressed and sent through the postal service,
networks generally operate on packets, which are analogous to the package you might send
through the mail. Like the mail package, the network packet has ‘from’ and ‘to’ addresses and
contains some information, such as a message. Also like the mail message, the receiver may or
may not elect or be compelled to acknowledge receipt of the packet.

If either the mail or network message exceeds certain size limits, it may need to be broken up
into separate parts and reassembled upon arrival at its destination. However, these physically
separate packets can be treated as single logical packets. The transport layer, addressing
semantics, packet sequencing, data formatting and a host of other defined components make up a
communications protocol. These pre-defined protocols are what allow computer systems to
properly interpret the packets received from other systems.

Synchronous and Asynchronous Transmission
Just like the mail package, the sender’s interest in the subsequent receipt of the packet and
actions taken in response to it varies. There are cases where the sender isn’t concerned about
when, or perhaps if, the packet arrived at its destination. There are other cases where the sender

© 1998 QUOIN Inc. Ted Burghart Page 1

Distributed Computing Overview June, 1998

wants confirmation that the packet arrived, but doesn’t need such confirmation to continue its
task. There are also cases where the sender cannot continue until it receives a response from the
receiver.

Synchronous modes of operation are those where the sender needs a response from the receiver
before it can continue. Modes of operation where the sender doesn’t require a response from the
receiver, at least not before it can continue, are considered asynchronous. This distinction is
generally one of the primary factors in determining a given communication protocol’s suitability
to a given task.

Clients, Servers and Peers
The terms Client/Server and Peer-to-Peer have come to be associated with specific attributes of
distributed computing. In fact, clients, servers and peers are just roles played by the participants
in a communication protocol. These roles can change constantly within a communications
session. Note that these participants are actually threads of execution, which may exist on the
same system or even within the same process as the thread of execution with which they are
communicating.

When a thread of execution opens a communication channel and waits for another thread to
contact it, it can generally be considered a server. The thread that initiates the communication
by contacting the server is generally considered a client. Peer is a general term used to refer to a
thread that is able to act as both a client and a server.

APIs - Application Programming Interfaces
Core communications facilities are generally provided by Operating System (OS) and network
requester APIs. These are groups of functions called by a program to accomplish the actual
transmission and receipt of bytes of data between systems. In general, these low-level
components provide limited abstraction of the underlying communication session, leaving
communicants to provide all logical services such as addressing and data conversion.

Host ‘B’

Server Logic

OS/Network API

Host ‘A’

Client Logic

OS/Network API
Network Connection

Figure 1: Direct Network Communication

Terminal Interfaces
The oldest form of distributed computing isn’t generally recognized as such - logging in to a host
system from a dumb terminal or terminal emulator running on a workstation. While not terribly
elegant, this method has proven itself very effective.

© 1998 QUOIN Inc. Ted Burghart Page 2

Distributed Computing Overview June, 1998

A number of protocols exist for this type of communication, among them Telnet, rsh and rexec.
The concept and implementation are simple; the client acts much like a directly connected
terminal, but with some additional facilities allowing it to communicate through a remote
connection. Each time a key is pressed, the client sends a packet containing a code identifying
the key to the server. The server, in turn, sends back packets containing data to be displayed by
the client. While generally limited to textual interfaces, server-based applications are able to use
color and extended keys to enhance client interface functionality.

Among the benefits of terminal interfaces is the fact that in many cases they don’t require the
application to be written using a communication API at all, allowing programs which were
written without consideration for distribution to be used remotely without modification.

Messages
Next in the evolution of distributed computing comes the concept of the message, a packet of
data that is labeled with the information it contains. This allows an intermediate processing
layer at the server to route the message, or the data it contains, to the receiver appropriate to it.

Messaging systems can operate quite naturally in an asynchronous architecture. Because
message-based communication is well suited to intermediate routing, these features can be
combined to provide a level of abstraction to the communication framework itself. Messages
may be deposited into a queue by the server/router, from which they’re retrieved and acted upon
by one or more logical processors. These processors may not respond to the messages at all or
may respond directly to the client. However, to maintain the abstraction, they can send a
message back to the server, through another queue, to be routed back to the client.

Message-based architectures are also able to operate synchronously. Generally in this mode, the
server/router passes the message to the processor, which passes a response back to the server to
be returned to the client. Another hybrid mode is available, however, in which the server
behaves asynchronously as described above and only the client behaves synchronously. This
combination of behaviors allows the server to gain the efficiency of asynchronous operation
while the client benefits from the procedural simplicity and safety of synchronous processing.

This basic architecture of client communication with a server which dispatches messages based
on their content will be seen to underlie many of the following distribution models.

RPC - Remote Procedure Call
The concept behind RPCs is simple - to make what appears to be a normal procedure call from
within a process and have its execution actually carried out within some other process, possibly
on a remote system. Various implementations of RPC protocols have been developed with the
common goal of reducing the complexity of communicating between processes through
implementation hiding.

The core concept of RPC mechanisms is that of serializing function call data into a sequential
stream and reconstructing it on the receiving end of the connection. This behavior takes place
synchronously, mirroring the semantics of traditional procedural programming. The RPC client
process makes a call to what appears to be a standard function, known as a stub. However,
rather than executing locally, the parameters passed to the function are packaged and transmitted
to a remote execution environment, where they are passed to the real implementation of the

© 1998 QUOIN Inc. Ted Burghart Page 3

Distributed Computing Overview June, 1998

function. Upon completion of the function’s execution, its return value is serialized and passed
back to the client stub, which returns it to the caller.

This behavior can be built upon the synchronous messages described previously.

Client/Server
As mentioned above, the terms client and server really refer to generic roles played by the
participants in a communication session. However, the term Client/Server has become common
in its usage describing a higher level, though conceptually similar, architecture. The common
interpretation of the term denotes a system where significant processing is done on the client,
which also submits operations to the server for execution. In this type of architecture,
synchronous operation is generally assumed, wherein the client waits for confirmation that the
operation has been carried out before proceeding.

Database Protocols

The X/Open Call Level Interface (CLI) [CLI 96] specification provides an interface to
Relational Database Management Systems (RDBMS) using Structured Query Language (SQL)
[SQL 92]. Microsoft's Open Database Connectivity (ODBC) API [ODBC 96] is the best
known implementation of the CLI standard. Sun Microsystems’ Java Database Connectivity
(JDBC) API [JDBC 98] is a new implementation of the CLI standard specifically for Java
applications.

CLI and the architecture it supports are perhaps the most commonly envisioned usage of
client/server computing, allowing applications written using the standard to operate in most
cases without regard for the database to which they're connected. The drawback to this lowest-
common-denominator approach, of course, is that it does not provide access to some of the more
advanced features that differentiate RDBMS products.

The API presented by the specification ranges in appearance from a thinly-veiled messaging
interface to an RPC interface. The message-like components of the interface expose a hybrid
synchronous/asynchronous mode of operation wherein initial results are returned synchronously
while processing may continue asynchronously at the server. This allows the client to continue
processing as soon as the server is able to provide an initial set of results; further results are
queued by the server and returned to the client as they are requested. The RPC components are
used for control purposes and operate in a strictly synchronous manner.

Middleware
Unlike client/server architectures where the client identifies and communicates directly with the
server, the concept of ‘middleware’ assumes a functional layer between the client and server.
This layer may provide services to the communicants such as location and alias resolution,
authentication and transaction semantics. Other behaviors associated with middleware include
time synchronization and translation between data formats.

© 1998 QUOIN Inc. Ted Burghart Page 4

Distributed Computing Overview June, 1998

Client Process
Logic

Implementation

Middleware

Logic
Implementation

Service

HostHost Host

Service Service

Figure 2: Middleware Architecture

This additional layer allows clients to interact with a generic abstraction of a server rather than
with a specific host and/or process. Various services are provided through abstracted layers as
well, blurring the distinction between services provided by the middleware and functionality
added by servers. These abstractions allow applications to be developed to a standardized API
without knowledge of the location or implementation of external functionality. This
implementation hiding is one of the middleware model’s strengths, although it makes it difficult
for the client to determine what performance it can expect from any given logic implementation.

DCE – Distributed Computing Environment
OSF1 DCE formalizes many of the concepts described here with a group of related specifications
[DCE 96]. The DCE RPC specification is among the most widely implemented in the industry,
providing consistent behavior across heterogeneous execution environments. The DCE
architecture also defines thread, time, authentication and security, directory and naming services.

Because DCE is supported by an industry consortium comprised of many major operating
system vendors, its standards enjoy widespread support across major computing platforms. DCE
core functionality is included in almost every available variant of UNIX, and as PC operating
systems have become more advanced, DCE core service support has become more common in
them as well. These standards are based on procedural programming methods in the ‘C’
programming language, however, limiting their applicability to multilingual and object-oriented
deployments.

Reliable Messaging
On their surface, reliable messaging architectures such as IBM’s MQSeries and Microsoft’s
MSMQ appear much like the queued message frameworks described earlier. Beneath this
surface, however, they differ greatly in their implementation.

In order to provide reliable delivery of asynchronous messages, a ‘store and forward’ model is
used wherein a message to be sent by a process is passed synchronously to a middleware layer
that stores the message, and any addressing information it may contain, to a persistent storage
mechanism before returning control to the sending process. Once the message has been stored in
this manner, the middleware can use a variety of methods to try to get the message to its
intended recipient, while the sender continues its processing.

1 The Open Software Foundation (OSF) has been renamed to The Open Group (OG), however DCE is trademarked
as “OSF DCE”.

© 1998 QUOIN Inc. Ted Burghart Page 5

Distributed Computing Overview June, 1998

The reliability of the architecture comes from the concept that the current holder of the message
does not destroy its persistent copy of the message until it has received confirmation from a
subsequent receiver that the message has been safely stored by it. Because each link in the
communication chain stores the message until it knows it has been forwarded successfully, the
original sender can proceed with its processing assured that its message will get through to its
destination. Because of the asynchronous nature of this architecture, the sender must request
confirmation of receipt of the message (or confirmation must be a specified action upon receipt
of the particular message) if it needs to know when the message arrived or other details of its
handling.

Distributed Objects
Object distribution architectures build upon the middleware concept by encapsulating data
within functional interfaces to objects. Like well-designed procedural APIs, implementation
details are hidden from the user of the object. Unlike traditional APIs, however, object
architectures limit access to the invocation of methods defined for the object. Furthermore,
methods are invoked on the objects indirectly, via references to the objects, eliminating the need
for local instances of the objects.

Object Client
Object

Implementations
Object

Implementations

Distribution/Services

RemoteObject Interface Calls Local

Figure 3: Distributed Object Architecture

This near-complete implementation hiding allows distributed object architectures to support
location, platform, and programming language transparency. Such transparency is not without
its costs, however, which has prompted the designers of some distributed object architectures to
forego some neutrality in exchange for perceived improvements in performance, applicability to
specific tasks and/or ease of use.

Java RMI - Remote Method Invocation
Sun’s Java, while relatively new to the computing industry, has gained a great deal of acceptance
due to its platform neutrality, safety and object-oriented design. Java was designed from the
ground up as a complete execution environment, rather than just another programming language,
therefore it is able to provide a consistent and abstract interface regardless of the underlying
platform.

This platform independence is accomplished through the use of a Java Virtual Machine (JVM)
that emulates a computing platform itself. The JVM is provided for each actual combination of
hardware and operating system upon which Java is to run. Because Java programs all appear, at

© 1998 QUOIN Inc. Ted Burghart Page 6

Distributed Computing Overview June, 1998

the application level, to be running on the same computing platform, communication between
Java applications is made significantly easier.

Java RMI [RMI 97] provides a language-specific architecture allowing Java-to-Java distributed
applications to be built easily. The main advantage to using Java RMI when designing a pure
Java distributed system is that the Java object model can be taken advantage of whenever
possible. Of course, this precludes using Java RMI in multilingual environments. Java’s
inherent platform independence, however, still allows deployment in heterogeneous
environments.

DCOM – Distributed Component Object Model
Microsoft’s core object distribution protocol is DCOM [DCOM 98], an extension of Microsoft’s
COM [COM 95] integration architecture, permitting interaction between objects executing on
separate hosts in a network.

COM began as a way to let client programs link to object implementations dynamically; i.e. at
run-time, incorporating them into a single address space. The implementations were packaged in
Dynamic Link Libraries (DLLs). COM is essentially an integration scheme, adopting the
structure of C++ virtual function tables for binary compatibility. These virtual function tables,
commonly known as ‘vtables’, consist of a table of function addresses (in C language terms) or
the equivalent. COM interfaces are presented to clients as pointers to vtables, thereby hiding the
details of the implementation. This makes COM binaries independently replaceable, as long as
they implement the same interfaces as their predecessors.

By taking the path of least resistance and adopting the C++ vtable model of binary integration,
COM achieved both replaceable binaries and the efficiency of in-process method invocation,
equivalent to a C++ virtual function call. These benefits naturally come at some cost. Because
an interface is presented as a pointer to a single vtable, interfaces cannot be defined using
multiple inheritance. This would imply multiple vtables and therefore multiple pointers per
interface. In addition, because there is no intermediary service to dispatch function calls, any
programming language besides C++ must go through some contortions to work with COM.

In order to address the rising need for distribution of objects across multiple hosts (i.e. multiple
physical address spaces), Microsoft developed DCOM as an extension to COM. As an extension
rather than a separate architecture, DCOM inserts a stub interface between the calling
application and the actual implementation of that interface. In this manner the architecture
strongly resembles an RPC-based model, although the implementation is still based on a binary
integration scheme, rather than a more abstract model.

COM+ is the recently announced successor to COM-based models incorporating a new
generation of technology. COM+ extends COM with multiple inheritance, a new runtime, and
language extensions that will make it easier to build COM objects in a variety of programming
languages. As of this writing, a COM+ specification has not been published, making it difficult
to assess its architecture and any tradeoffs that may have been (or will be) made to facilitate its
implementation.

© 1998 QUOIN Inc. Ted Burghart Page 7

Distributed Computing Overview June, 1998

CORBA – Common Object Request Broker Architecture
CORBA is a standard maintained by the Object Management Group (OMG) for the distribution
of objects across heterogeneous networks. Designed as a platform-neutral infrastructure for
inter-object communication, it has gained widespread acceptance.

The OMG is a consortium of more than 760 companies formed to create a standard architecture
for distributed object computing. The goal of the OMG2 is to combine object and distributed
systems technologies into an interoperability architecture that supported integration of existing
and future computing platforms. The result of that effort is the Object Management Architecture
(OMA); CORBA specifies the Object Request Broker (ORB) underlying the OMA. The ORB
provides the base architecture [CORBA 97] as well as a number of services [COSS 97] such as
security, transactions and messaging.

CORBA allows applications to use a common interface, defined in an Interface Definition
Language (IDL), across multiple platforms and development tools. OMG IDL is designed to be
platform and language-neutral; data and call format conversions are handled transparently by the
ORB. All interfaces to CORBA objects, and the data types used in those interfaces, are specified
in IDL. This common definition allows applications to operate on objects without concern for
the manner in which the object is implemented.

As viewed by the client, a CORBA object is entirely opaque, in that the object’s implementation
and location are unknown to the application using it. Generally, a CORBA client will know only
how to find or create the objects it needs through interfaces to well known objects such as query
mechanisms and factories. It is likely that the client will not know where or how even these well
known objects are implemented, but will instead be able to locate them by name only through the
CORBA Naming Service [COSS 97].

In the case of any of these CORBA objects the client knows only what the object’s public
interface is and can therefore access the object’s functionality. CORBA also provides some
capabilities for runtime object interface identification and invocation through its Interface
Repository (IR) and Dynamic Invocation Interface (DII). While these have the potential to allow
(almost) complete runtime configuration of access to CORBA objects, in practice there may be
very few cases where such capabilities are actually workable due to semantic issues.

Conclusions
Many of the above concepts are shared across distribution architectures, and many architectures
are built upon each other.

Some technologies, however old, still offer compelling reasons to use them. Certainly, no
mainframe or UNIX system administrator would be willing to give up text-mode terminal
interfaces for remote administration over dial-up connections. Similarly, implementing high-
volume or low-overhead communications is frequently best done using low-level operating
system and network interfaces.

However, where ease and cost of deployment are larger factors, standardized architectures are
generally a good choice. In this case, the architectures can be divided between asynchronous

2 Microsoft participates, but does not submit technology to the OMG. Instead, Microsoft promotes its own
Windows-centric Distributed Component Object Model (DCOM).

© 1998 QUOIN Inc. Ted Burghart Page 8

Distributed Computing Overview June, 1998

and synchronous, with these most commonly being further divided between procedural and
object-oriented methods.

For asynchronous communication, message-based architectures will frequently be most
appropriate. In cases where assured delivery3 is required, reliable store-and-forward messaging
middleware is usually the answer. In other cases, the additional overhead of reliable message
delivery may not be necessary, especially when the general reliability of current computing
platforms is considered.

Where synchronous, procedural programming is used, DCE RPC will generally be a good
choice. This proven, widely available framework offers a C language interface that will be
reasonably easy to use in C and C++ applications. For systems written in other languages or
where DCE RPC support is incomplete, synchronous messaging may be an appropriate solution.

Last, but not least, comes the subject of object-oriented distribution. Certainly, of the three
frameworks discussed, CORBA provides the greatest flexibility with its language and platform
neutrality. There are, of course, some costs associated with this neutrality, both in deployment
and runtime overhead. These costs may be reduced by design trade-offs. Of course, a less
flexible alternative may become much more costly if it doesn’t support some future requirement.

One of the biggest factors in favor of Microsoft’s COM/DCOM solutions is their installed base -
virtually every PC running Windows has some level of COM support built in. Most 32-bit
versions of Windows have DCOM support as well, providing a compelling argument for its use
in Windows-only environments. Nearly all Windows development tools provide fairly easy to
use wrappers allowing integration of COM components into applications they generate as well.

The case for using Java RMI is simply that it’s so easy to do. Because it only supports Java
objects it fits directly into the Java model with minimal impact on development resources.
However, since CORBA support is being built into the Java environment, RMI doesn’t have the
advantage of being assured a larger installed base. Regardless, for pure Java distributed systems,
the ease with which RMI-based systems can be deployed is compelling.

Proponents of all of these architectures can be found easily and in great numbers, and it is
impossible to state that one alone is best for all distributed systems. It should also be noted that
while many of the most widely used implementations of these architectures have been addressed
here, there are many more which have not. In particular, reliable messaging is a rapidly growing
field.

An extensive comparison of COM and CORBA can be found in [Quoin 98]. Comparisons of,
and documentation for, all of the mentioned architectures can be found in a number of locations
on the World Wide Web, as well.

Distributed computing is becoming more prevalent every day. The architectures discussed here,
and many others, are able to solve a range of problems that could not even be considered a few
years ago. We recommend careful identification of present and future needs, as well as current
competencies, before deciding to deploy any of them.

3 Of course, without suitable precautions against component failures, even the most reliable architectures may be
exposed to data loss or corruption.

© 1998 QUOIN Inc. Ted Burghart Page 9

Distributed Computing Overview June, 1998

References
[CLI 96] “Information Technology - Database Languages - SQL - Call-Level

Interface” ANSI/ISO/IEC 9075-3-1996 (ITI/NCITS October 1996)

[COM 95] “The Component Object Model Specification” (Microsoft Corporation,
Digital Equipment Corporation, October 1995)

[CORBA 97] “The Common Object Request Broker: Architecture and Specification,
Version 2.1” (Object Management Group, et al, August 1997)

[COSS 97] “CORBAservices: Common Object Services Specification” (Object
Management Group, et al, July 1997)

[DCE 96] R. Salz; “DCE 1.2 Contents Overview”, Open Group RFC 63.3 (The Open
Group, October 1996)

[DCOM 98] N. Brown, C. Kindel; “Distributed Component Object Model Protocol”
(Microsoft Corporation, January, 1998)

[JDBC 98] G. Hamilton, R. Cattell; “JDBC: A Java SQL” (Sun Microsystems, Inc.,
February 1998)

[ODBC 96] “ODBC 3.0 Programmer’s Reference” (Microsoft Corporation, October
1996)

[RMI 97] “Java Remote Method Invocation” (Sun Microsystems, Inc., December
1997)

[SQL 92] “Information Technology - Database Languages - SQL”, ISO/IEC
9075:1992 (ISO, November 1992), ANSI X3.135-1992 (ANSI, October
1992)

[Quoin 98] O. Tallman, J. Kain; “COM versus CORBA: A Decision Framework”
(Quoin Inc., January 1998)

© 1998 QUOIN Inc. Ted Burghart Page 10

